

LCD Data Sheet

LM16X21A Dot Matrix LCD Unit

FEATURES

- STHC (Super Twisted High Contrast)
 Yellow Green Transmissive Type
- Low Power Consumption
- Thin, Lightweight Design Permits Easy Installation in a Variety of Equipment
- General Purpose CMOS:
 - The Unit can be Easily Interfaced to a Microcomputer With Common 4-Bit and 8-Bit Parallel Inputs and Outputs
- Built-in Character Generator ROM, RAM, and Display Data RAM:
 - Character Generator ROM 160
 Different 5 × 7 Dot Matrix Character
 Patterns
 - Character Generator RAM Eight Different, User-Programmed 5 × 7 Dot Matrix Patterns (Write Capability by Program)
 - Display Data RAM 80 × 8 Bits

- Extensive Instruction Set:
 - Display Clear, Cursor Home, Display ON/OFF, Cursor ON/OFF, Character Blink, Cursor Shift, and Display Shift
- Internal Automatic Reset Circuit at Power-On
- Operates From a Single 5 V Power Supply and Incorporates an LCD Panel Which Provides a Highly Stable Display Over a Wide Range of Temperatures

DESCRIPTION

The SHARP LM16X21A Dot Matrix LCD Unit consists of a combination of a 5×7 dot 16-character 2-line dot matrix LCD panel, LCD driver, and yellow green backlight LED fabricated on a single printed circuit board. Incorporating mask ROM-based character generator and display data RAM in the controller LSI, the unit is capable of efficiently displaying the desired characters under microcomputer control. LCD is positive type.

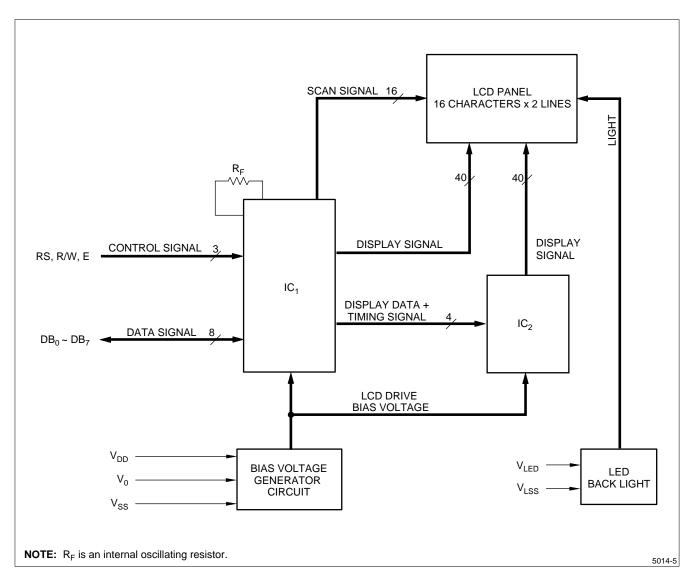


Figure 1. LM16X12A Block Diagram

Page 2 LCD Data Sheet

MECHANICAL SPECIFICATIONS

PARAMETER	SPECIFICATIONS	UNIT	NOTE
Outline Dimensions	84 (W) × 44 (H) × 16 max (D)	mm	_
Active Area	61 (W) × 15.8 (H)	mm	-
Display Format	16 characters × 2 lines	-	ı
Character Format	5×7 dots, with cusor	-	ı
Character Size	2.96 (W) × 4.86 (H) (5 × 7 dots)	mm	_
Dot Size	0.56 (W) × 0.66 (H)	mm	ı
Dot Spacing	0.04	mm	_
Character Color	Dark blue	_	1
Backlight Color	Yellow green	1	ı
Weight	Approximately 40	g	-

NOTE:

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	NOTE
$V_{DD} - V_{SS}$	Supply Voltage (Logic)	-0.3	+6.5	V	_
$V_{O} - V_{SS}$	Supply Voltage (LCD Drive)	0	+6.5	V	VDD > V _O
I _{LED}	Supply current (Backlight LED)	_	240	mA	t _A = 25°C
VIN	Input Voltage	-0.3	V _{DD} +0.3	V	_
Tstg	Storage Temperature	-25	+70	°C	_
Topr	Operating Temperature	0	+50	°C	_
V _{LED} - V _{LSS}	Reverse Voltage (Backlight LED)	-5	_	V	_

^{1.} Due to the characteristics of the LC material, the colors vary with environmental temperature.

ELECTRICAL CHARACTERISTICS ($t_A = 25^{\circ}C$)

SYMBOL	PARAMETE	MIN.	TYP.	MAX.	UNIT	NOTE	
V _{DD} – V _{SS}	Supply Voltage	(Logic)	4.75	5.0	5.25	V	_
Vo – Vss	Supply Voltage (LCD Driver)	_	0.65	1	V	V _{DD} = 5.0 V, Note 1	
V _{IL}	Input Voltage	'L'	-0.3	_	0.6	٧	_
V _{IH}	input voltage	'H'	2.2	-	V_{DD}	V	_
V _{OL}	Output Voltage	'L'	_	_	0.4	V	I _{OL} = 1.2 mA
V _{OH}	Output voltage	'H'	2.4	_	_	V	$I_{OH} = -0.205 \text{ mA}$
I _{IL}	Input Leakage C	urrent	_	_	1	μA	_
fosc	Internal Oscillati Frequency	ng	_	250	1	kHz	-
I _{DD}	Supply Current		_	1.6	2.2	mA	$V_{DD} = 5.0 \text{ V}, V_{O} = 0 \text{ V}$
I _{LED}	Supply Current		_	120	180	mA	$V_{LED} - V_{LSS} = 5.0 \text{ V}$
P _D	Power Dissipation	_	608	911	mW	$V_{DD} = 5.0 \text{ V}, V_{O} = 0 \text{ V}$ $V_{LED} - V_{LSS} = 5.0 \text{ V}$	
V _{LED} – V _{LSS}	Supply Voltage (Backlight LED)		4.75	5.0	5.25	V	

NOTE:

INTERFACE TIMING (V_{DD} = $5.0 \text{ V} \pm 5\%$, t_A = $0 \text{ to } 50^{\circ}\text{C}$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
tcyce	Enable Cycle Time	1000	_	_	ns
PW_{EH}	Enable Pulse Width	450	_	1	ns
ter, ter	Enable Rise/Fall Time	_	_	25	ns
t _{AS}	RS, R/W Setup Time	140	_	1	ns
t _{AH}	Address Hold Time	10	_	1	ns
t _{DSW}	Data Setup Time	195	_	1	ns
t _{DDR}	Data Delay Time	_	_	320	ns
t _H	Data Hold Time (Write)	10	_	-	ns
tohr	Data Hold Time (Read)	20	_	-	ns

Page 4 LCD Data Sheet

^{1.} After more than 30 minutes since backlight begins lighting.

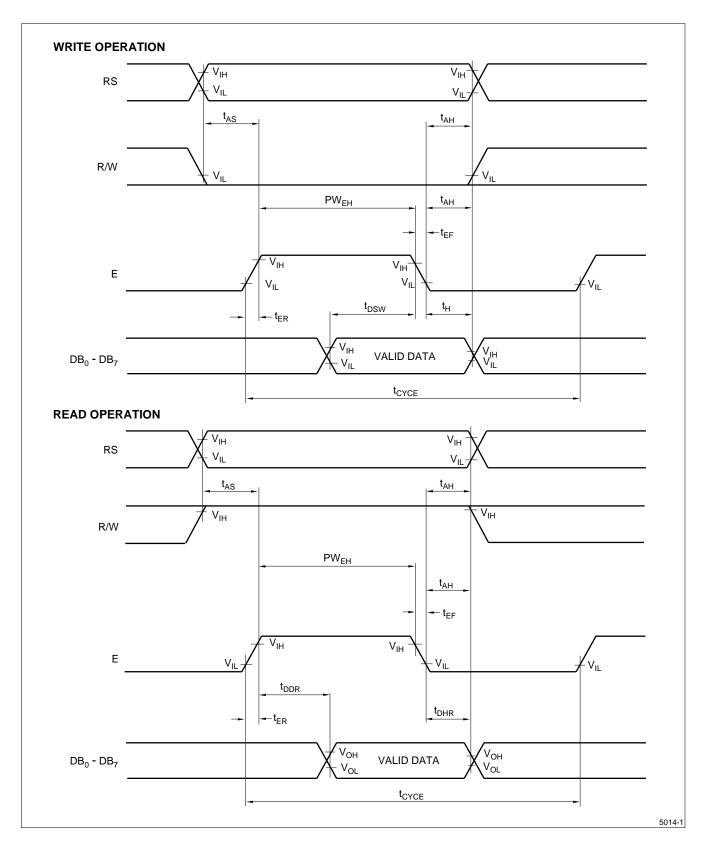


Figure 2. Interface Timing Chart

PIN CONNECTIONS

PIN NUMBER	SYMBOL	DESCRIPTION	CONNECTION				
1	V _{SS}	Ground Potential	GND: 0 V				
2	V_{DD}	Power Supply	+5 V Power Supply				
3	Vo	Contrast Adjustment Voltage	Adjust the contrast by supplying voltage from 0 V to 5 V				
4	RS	Register Select Pin					
5	R/W	Read/Write Select Pin	Control signal inputs				
6	Е	Enable Pin					
7	DB ₀	Code I/O Data LSB					
8	DB ₁	Code I/O Data 2nd Bit					
9	DB ₂	Code I/O Data 3rd Bit	Data bus signals				
10	DB ₃	Code I/O Data 4th Bit	 DB₇ may also be used to check the busy flag Lines DB₀ – DB₃ are not used when interfacing 				
11	DB ₄	Code I/O Data 5th Bit	with a 4-bit microprocessor				
12	DB ₅	Code I/O Data 6th Bit					
13	DB ₆	Code I/O Data 7th Bit					
14	DB ₇	Code I/O Data MSB					
15	V_{LED}	Power Supply (+)	5 V power supply between V _{LED} and V _{LSS}				
16	VLSS	Power Supply (-)	o v power supply between v LED and v LSS				

Page 6 LCD Data Sheet

OPTICAL CHARACTERISTICS ($t_A = 25^{\circ}$ C) (When Backlight LED is OFF State)

The following specifications are the optical characteristics when LCD drive voltage is adjusted to the maximum contrast in $\theta = 0^{\circ}$.

SYMBOL	PARAMETER	CONE	MIN.	TYP.	MAX.	UNIT	NOTE	
$\theta_2 - \theta_1$	Viewing Angle Range	φ = 0°	C ₀ ≥ 2.0	60	_	_		
Θ_1			$C_0 = 2.0$	-	_	-25		
$\mathbf{\theta}_2$		$\theta_1 < \theta_2$	$G_0 = 2.0$	25	_	_	degrees	1
$\theta_2 - \theta_1$		φ = 45°	C ₀ ≥ 2.0	60	_	_		
θ ₁		315°	C - 20	_	_	-25		
$\mathbf{\theta}_2$		$\theta_1 < \theta_2$	$C_0 = 2.0$	25	_	_		
C ₀	Contrast Ratio	θ = 0°	, φ = 0	5.0	8.0	_	_	2
t _R	Response Speed – Rise	θ = 0°	, φ = 0	-	150	250	ms	3
t _D	Response Speed – Decay	θ = 0°	, φ = 0	_	150	250	ms	3

NOTES:

- 1. The viewing angle range is defined as shown in Figure 3.
- 2. Contrast ratio is defined as follows:

When input signal is applied to the unit to select (turn on) the LCD dots (pixels) to be measured in the optical characteristics test method as defined in Figure 4.

Contrast ratio = $\frac{ \text{Photodetector output voltage with non-select waveform being applied} }{ \text{Photodetectoroutput voltage with select waveform being applied} }$

When input signal for selecting or non-selecting the dots to be measured is applied using the optical characteristics test
method shown in Figure 4. The response characteristics of the photodetector output are measured as shown in Figure 5.

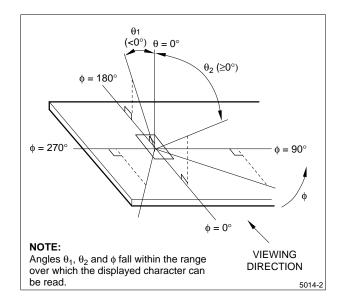


Figure 3. Definition of Viewing Angle

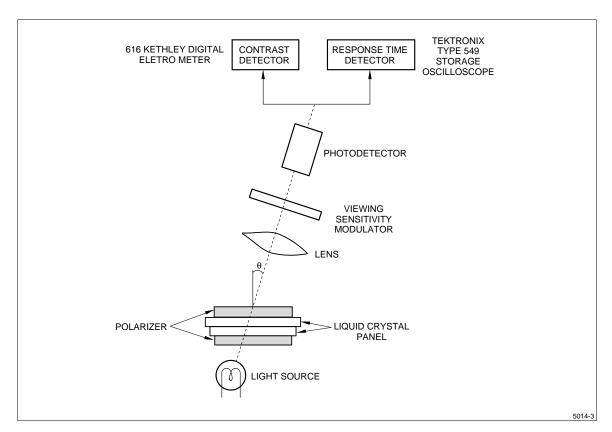


Figure 4. Optical Characteristics Test Method

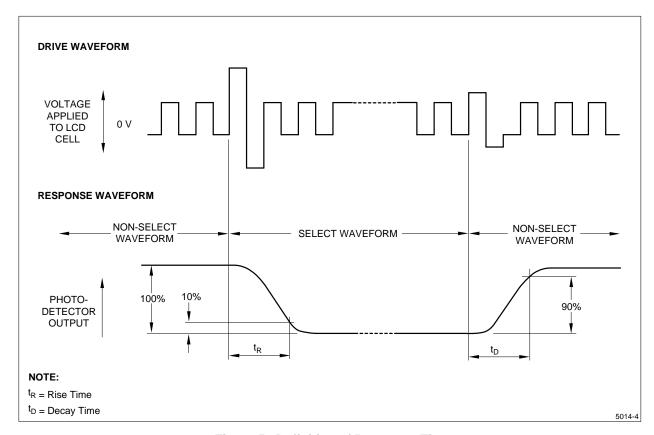


Figure 5. Definition of Response Time

Page 8 LCD Data Sheet

CHARACTERISTIC OF BACKLIGHT LED (When LCD is OFF State)

PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTE
Luminance	9	25	_	cd/m ²	1
Peak Emission Wavelength	_	565	_	nm	1
Spectrum Radiation Bandwidth	_	30	_	nm	_

NOTE:

1. Center of the unit with LED backlight lit.

PIN DESCRIPTION

VDD and Vss Pins

 V_{DD} and V_{SS} pins are for the power supply. V_{SS} pin is grounded, and V_{DD} pin is supplied with +5 V. The voltage necessary to drive LCD is generated in the unit.

RS Pin

The controller LSI contains two 8-bit registers: instructions register (IR) and data register (DR). RS pin selects these registers.

IR serves to store instruction codes for display clear, shift, etc. and address information for display data RAM (DD RAM), character generator RAM (CG RAM); DR serves to temporarily store data to be written into DD RAM and CG RAM.

'0': Instruction register (Write) Busy flag register; address counter (Read)

'1': Data register (Read/Write)

R/W Pin

Read or write selection signal pin.

'0': Write

'1': Read

E Pin

Data read or write operation enable signal pin.

DB₀ to DB₇ Pins

Tri-state bidirectional data bus pins. The bus allows data to be transmitted to or received from the external circuit. DB_7 serves also as busy flag output. When the unit is interfaced to a microcomputer with 4-bit parallel outputs, DB_0 to DB_3 pins are not used.

V₀ Pin

Viewing angle is varied and contrast is adjusted by changing input voltage between +5 V to 0 V by applying bias voltage to the LCD driver.

V_{LED} and V_{LSS}

Power supply for LED backlight. (By changing the supply voltage, backlight luminance can be adjusted). V_{LED} is plus and V_{LSS} is minus.

INSTRUCTION SET

INSTRUCTION					СО	DES	DESCRIPTION				
INSTRUCTION	RS	R/W	DB ₇	DB_6	DB ₅	DB ₄	DB ₃	DB ₂	DB ₁	DB_0	DESCRIPTION
Display Clear	0	0	0	0	0	0	0	0	0	1	Clears entire display area, restores display from shift, and loads address counter with DD RAM address 00H.
Display/ Cursor Home	0	0	0	0	0	0	0	0	1	*	Restores display from shift and loads address counter with DD RAM address 00H.
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Specifies cursor advance direction and displays shift mode. This operation takes place after each data transfer.
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	Specifies activation of display (D), cursor (C), and blinking of character at cursor position (B).
Cursor/ Display Shift	0	0	0	0	0	1	S/C	R/L	*	*	Shifts display or moves cursor.
Function Set	0	0	0	0	1	DL	1	0	*	*	Sets interface data length (DL).
CG RAM Address Set	0	0	0	1			A	CG			Loads the address counter with CG RAM address. Subsequent data is CG RAM data.
DD RAM Address Set	0	0	1				Add				Loads the address counter with a DD RAM address. Subsequent data is DD RAM DATA.
Busy Flag/ Address Counter Read	0	1	BF				AC				Reads out busy flag (BF) and contents of address counter (AC).
CG RAM/ DD RAM Data Write	1	0			Write data						Writes data into DD RAM or CG RAM.
CG RAM/ DD RAM Data Read	1	1				Read	d data				Reads data from DD RAM or CG RAM.

NOTES:

I/D = 1: Increment

S = 1: Display shift

D = 1: Display ON

C = 1: Cursor ON

B = 1: Character at cursor position blinks

I/D = 0: Decrement

S = 0: Display freeze

D = 0: Display OFF

C = 0: Cursor OFF

B = 0: Character ar cursor position unblinks

S/C = 1: Display shift

R/L = 1: Right shift

DL = 1: 8 bits

BF = 1: During internal operation

S/C = 0: Internal cursor shift

R/L = 0: Left shift

DL = 0: 4 bits

BF = 0: End of internal operation

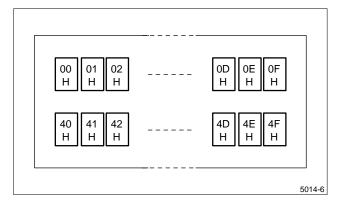
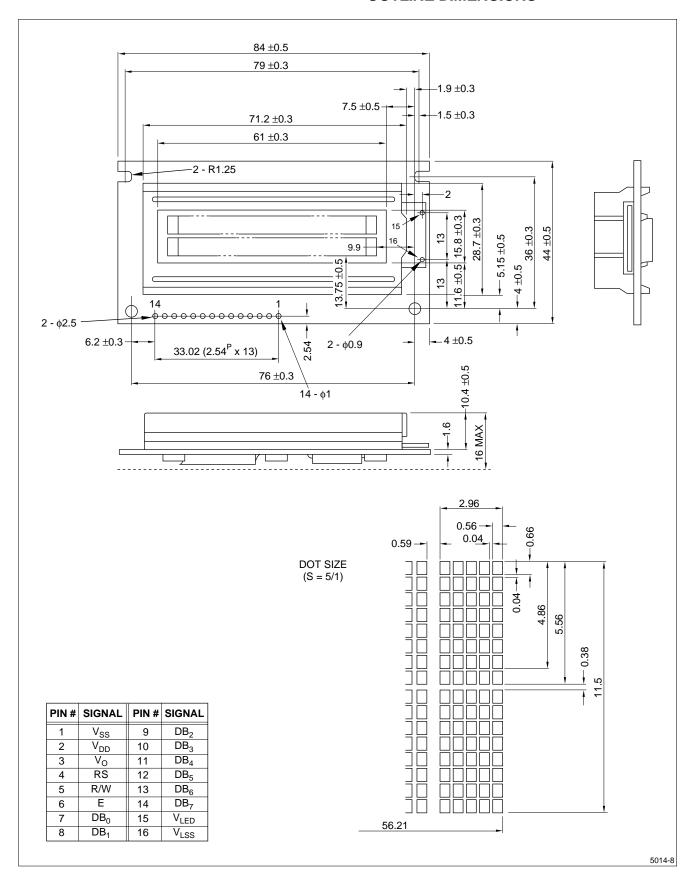


Figure 6. Display Address (When the Display is not Shifted)

Page 10 LCD Data Sheet


HIGH-ORDER													
LOW- ORDER 4 BIT	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)					-							*
xxxx0001	(2)		•										*
xxxx0010	(3)	11				I	!-"-				.::	*	
xxxx0011	(4)		••			====	:::.					==-	
xxxx0100	(5)						!	••.				*	:::
xxx0101	(6)	***						==				===	
xxx0110	(7)				1.1		i.,.i					*	
xxxx0111	(8)	:	:							;:::		*	
xxxx1000	(1)	ŧ.			:4:	! !	×	-ŧ			i,i		::: :::
xxxx1001	(2)				1.1				***	.i		[*
xxxx1010	(3)	-	==	:		:				1	1	*	
xxxx1011	(4)		==				4					*:	
xxxx1100	(5)	:		!			=		=				
xxxx1101	(6)					! • • • • • • • • • • • • • • • • • • •	***			••••	-		•
xxxx1110	(7)	==			"	!-"!					-,		
xxxx1111	(8)		•			::: !		•::	•!	**			*

- NOTES:
 1. CG RAM is character generator RAM in which user-definable character patterns are stored.
 2. X mark: prohibition of input.

Figure 7. Input Code Vs. Character Pattern

Page 11 **LCD Data Sheet**

OUTLINE DIMENSIONS

Page 12 LCD Data Sheet